
Geometric phase helical PSF for simultaneous orientation
and 3D localization microscopy

Yongzhuang Zhou (周勇壮)1,2*, Hongshuo Zhang (张洪硕)1,2, Yong Shen (沈 咏)1,2, Andrew R. Harvey3, and
Hongxin Zou (邹宏新)1,2

1 Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, China
2 Hunan Key Laboratory of Mechanism and Technology of Quantum Information, Changsha 410073, China
3 School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK

*Corresponding author: y.zhou@protonmail.com
Received August 24, 2023 | Accepted November 29, 2023 | Posted Online March 25, 2024

The 3D location and dipole orientation of light emitters provide essential information in many biological, chemical, and
physical systems. Simultaneous acquisition of both information types typically requires pupil engineering for 3D localization
and dual-channel polarization splitting for orientation deduction. Here we report a geometric phase helical point spread
function for simultaneously estimating the 3D position and dipole orientation of point emitters. It has a compact and simpler
optical configuration compared to polarization-splitting techniques and yields achromatic phase modulation in contrast to
pupil engineering based on dynamic phase, showing great potential for single-molecule orientation and localization
microscopy.
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1. Introduction

Imaging of the 3D location and dipole orientation of sparsely
distributed point emitters gives insights into a range of biological
structures, chemical processes, and molecule-level bindings
inside cells[1–6]. The ability to localize point emitters with
10 nm-order precision has aided optical microscopes to resolve
features beyond the resolution limit. Rapid development of
localization-based superresolution microscopy over the past two
decades has stimulated the emergence of many imaging configu-
rations and engineered point spread functions (PSFs) to achieve
3D localization, better spatial resolution, larger depth of field,
faster image acquisition, higher photon efficiency, etc.[7–12].
The desire for detecting the emitter’s orientation in the mean-

time originates from the problems associated with localizing
more rigidly attached label fluorophores, which cannot be
treated as ideal point emitters. Their emission pattern resembles
that of an oscillating electric dipole, in contrast to the isotropic
emission pattern in most scenarios of localization microscopy,
where the emitters are flexibly attached to the structure of inter-
est and can wobble freely. The orientation of anisotropic fluoro-
phores can induce errors when estimating their positions with
PSF model functions that do not match experimental data[1,13].
Single-molecule orientation microscopy (or superresolution

polarization microscopy) tackles this problem by measuring
the polarization components of the collected light to determine

the dipole orientation of the emitters. On one hand, this helps
minimize the orientation-induced errors in localization micros-
copy; on the other hand, one gains access to the anisotropy
of underlying biological structure with this additional emitter
orientation information. A number of techniques have been
introduced for simultaneously measuring the 3D positions
and orientations of rotationally constrained emitters and pro-
viding superresolved images[2,13–17]. However, existing tech-
niques typically require polarization splitting in dual-channel
configurations, which are often bulky and require complicated
calibration.
In this work, we propose a polarization-sensitive helical PSF

based on geometric phase that is engineered to yield four lobes
(i.e., two pairs). Each pair of lobes forms a double-helix PSF, and
the two pairs exhibit opposite z-dependent rotations and oppo-
site circular polarization states. Therefore, one can determine
simultaneously the 3D position and the dipole orientation of
point emitters from a single snapshot image by measuring the
PSF rotation angle and the relative intensity of the two pairs
of PSF lobes. This technique allows for a robust and compact
single-channel configuration and an achromatic PSF. It utilizes
both circular polarization states, yielding nearly 100% photon
efficiency. This is vital in photon-starving single-molecule
imaging applications, outperforming phase modulations intro-
duced by optical path difference via liquid crystal spatial light
modulators.
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2. Methods and Results

2.1. PSF engineering using geometric phase

To achieve single-snapshot 3D particle localization, engineered
PSFs are typically used on a microscope that employs a phase
mask in its pupil plane. The PSF in the image space is therefore
expressed as the Fourier transform of the modulated pupil func-
tion[18,19],

PSF ∝ jFfA�r,ϕ�e2πi�ΔΦ�r,ϕ��D�r,z��gj2, �1�

where �r,ϕ� are the normalized pupil coordinates, A�r,ϕ� is the
pupil amplitude, ΔΦ�r,ϕ� is the phase term introduced by the

phase mask, D�r, z� = zλ−1
�������������������������
n2 �NA2r2

p
describes the defocus

phase that occurs when the emitter is displaced by z from the
focal plane, n is the refractive index of the medium, and λ is
the wavelength of light.
To add polarization sensitivity to the engineered PSF, we uti-

lize geometric phase in the microscope pupil function.
Geometric phase is a result of the spin–orbit interaction of light
as it propagates through an anisotropic medium, such as liquid
crystals[20,21]. As in Eq. (2), the output field passing a geometric
phase element yields the residual light component (first term)
and the modulated light component (second term). The former
shows the same polarization as the incident light; the latter
exhibits an opposite circular polarization state (χ∓) as the inci-
dent light and an additional geometric phase term. The magni-
tude of the geometric phase is generally proportional to the
orientation angle of the effective local optical axis α�r,ϕ� and
exhibits a polarization-dependent sign. When using liquid crys-
tals, α is the orientation of the local fast axis at �r,ϕ�,

Eout = cos
Γ
2
Ein � i sin

Γ
2
e±i2αχ∓: �2�

The relative intensity of unmodulated light and modulated
light is determined by parameter Γ = 2π�neff − no�d=λ, which
is a relative phase retardation resulting from the birefringence
of the liquid crystal[21]. When Γ is designed as �2k� 1�π with
k being an integer, the unmodulated light can be completely
eliminated, with the modulated light reaching maximum
intensity.
In this way, the incident light is spatially modulated and, at

the same time, decomposed to left-handed circular polarization
(LCP) and right-handed circular polarization (RCP). We can
design the local optical axis distribution α�r,ϕ� as half the
desired phase modulation to achieve PSF engineering for our
purpose. Since α does not depend on the wavelength of light,
achromatic PSF can be achieved, outperforming traditional
techniques using a dynamic phase.

2.2. Decoding depth information

Assume the incident light is linearly polarized and α = 1
2ΔΦ is

designed as half the double-helix phase modulation; we get two

opposite phase modulations for LCP and RCP, which generate
two mirrored double-helix PSFs following Eq. (1). Each exhibits
depth-dependent rotation but in the opposite direction. Thus,
this allows us to estimate the 3D position of the point emitter
from their mutual center and their rotation angles, and to deter-
mine the polarization components of its fluorescence from the
relative intensity of the two pairs of PSF lobes.
Figures 1(a) and 1(b) show a simulation of the proposed geo-

metric phase helical PSF in comparison with the diffraction-
limited PSF at various axial positions. The pair of “green” lobes
is formed by light of LCP, while the “magenta” lobes are formed
by light of RCP. It is evident that all PSF lobes rotate around
a common center as the defocus changes. The two pairs overlap
at the focal plane (z = 0), but they do not interfere with
each other due to the orthogonal polarization states. An illustra-
tion of the 3D intensity distribution of the proposed PSF is
shown in Fig. 2, where we can observe the helical propagation
of both components. The diffraction-limited PSF profile
expands dramatically as defocus increases, yielding a low sig-
nal-to-noise ratio at large defocus; in addition, it exhibits the
same profile on both sides of the focal plane, resulting in a sign
ambiguity when deducing the depth information. In contrast,
the helical PSF does not suffer from the above-mentioned short-
comings. In spite of its slightly larger lobe size compared
to the in-focus Airy disk, its spatially rotating property leads
to a relatively compact profile over the whole depth range of
interest.[7,9]

Note that in our analysis and experiments, we utilize the
Fresnel-zone-based[9,22] design for the double-helix phase
modulation, which was defined on the Fresnel zones as

Fig. 1. Numerical simulation on a 0.75 NA imaging system over a depth range
of 6 μm. (a) Diffraction-limited PSF; (b)–(d) geometric phase helical PSF of
different lobe separation and rotation rate, with parameter L = 7, 11, and 14,
respectively, and ϵ = 0.9. L1, L2 are labels for the LCP lobes and L3, L4 are labels
for the RCP lobes.
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ΔΦ�r,ϕ� = �2l − 1�ϕ,
�
l − 1
L

�
ϵ

< r <

�
l
L

�
ϵ

, l = 1, : : : , L,

(3)

where L is the number of angular Fresnel zones with l referring
to the l-th zone. ϵ is a parameter that determines the helix
peak confinement and the shape invariance during rota-
tion[9]. A larger L leads to a larger lobe spacing and a slower
angular rotation rate, and thus a larger operable depth range.
Figures 1(b)–1(d) correspond to PSFs generated with L=
7, 11, 15, respectively. Depending on the sample thickness, the
operable depth range may be adjusted by changing L or the
numerical aperture of the objective. The resultant ΔΦ is shown
in Fig. 2. Two opposite phase functions are illustrated because
the geometric phase mask yields opposite phase modulations
for LCP and RCP. The phase functions are marked as four
regions (R1, R2, R3, R4), which correspond to the four lobes
(L1, L2, L3, L4) in Fig. 1. The phase function has rotational sym-
metry of order 2, considering that ΔΦ�r,ϕ� ± 2π and ΔΦ�r,ϕ�
are effectively the same phase function.
We demonstrate this method on a microscope with 0.75

numerical aperture (NA), 60× magnification by imaging
200 nm-diameter fluorescent beads with an emission peak at
520 nm. As shown in Fig. 2, a 4f system was employed to access
the Fourier plane where the geometric phase mask with phase
pattern ΔΦ was placed. The mask was custom-fabricated via
direct-laser writing[23], i.e., using a polarized laser to rearrange
the fast-axis orientation on a liquid crystal substrate to a reso-
lution of 1000 × 1000 pixels.
Using a piezo stage to scan an emitter along the optical axis,

images at various depths were captured, as shown in Fig. 3(a);
these correspond to those in the numerical simulation in
Fig. 1(c). One can see that our experimental PSF intensity pro-
files are very consistent with the simulations. The LCP and RCP
components of the PSF were filtered experimentally, as shown in
Figs. 3(b) and 3(c), where we can see their opposite z-dependent
rotations. Note that with isotropic emitters, the intensities of the
two PSF pairs are the same.

We fit multipeak Gaussian profile to the experimental PSF
using the least-square method to find the centroid of each lobe
(xi, yi), from which the lateral coordinates of the point emitter
and the PSF rotation angle can be deduced. Once PSF rotation
is precalibrated with respect to the emitter’s axial coordinate, it is
possible to calculate emitter’s 3D spatial coordinates from a sin-
gle snapshot image. Figure 4 shows the calibration data of PSF
rotation. A linear relationship was obtained, as expected, over
the investigated depth range of 4 μm. It is evident that LCP
and RCP yield opposite rotations, with the fitted rotation ratio
being 12.9 and 13.2 deg/μm, respectively.
Two problems need to be addressed with the above helical

PSF design. (1) Due to the symmetrical PSF profile, there is
ambiguity in determining the sign of defocus and in differenti-
ating the two circular polarization components. (2) Despite the
fact that χ± are orthogonal polarization states and the two pairs
of PSF lobes do not interfere, overlapping PSF lobes near the

Fig. 2. Experimental configuration. A 4f system is used to access the back
focal plane of the objective where a geometric helical phase mask is placed.
NA, 0.75; overall magnification, 60×. Focal length of lens 1, 200 mm; focal length
of lenses 2 and 3, 300 mm. The phase mask generates opposite modulations
on the LCP and RCP light. The two effective phase masks are divided into four
regions (R1, R2, R3, R4), which account for the four lobes in the PSF.

Fig. 3. Experimental image stacks of the geometric phase helical PSF over a
depth range of 6 μm. (a) Total intensity; (b) with RCP filtered out; and (c) with
LCP filtered out.

Fig. 4. Calibration data for the geometric helical PSF rotation over a depth
range of 4 μm. Two circular polarization components are plotted with
magenta and cyan scatters being the experimental data, red and blue solid
lines being the linear fit.
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focal plane still present challenges in data processing (i.
e., extracting the x, y, and z coordinates).
These problems can be eliminated by downgrading the sym-

metry in the PSF intensity profile. For example, an additional
linear termΦshift in α [as in Eq. (4)] gives rise to opposite lateral
shifts in LCP and RCP components, thus separating them spa-
tially. Figure 5 shows two example designs of the shifted helical
PSF; false color shows the LCP and RCP, respectively. In the first
case, ΔΦshift = cy, yielding a constant vertical shift in the image,
with the LCP lobes shifted downwards and RCP lobes shifted
upwards. In the second case, ΔΦshift = cx, i.e., the PSF shift is
along the x direction. These designs enable the measurement
of both the PSF rotation and the intensity of two polarization
components over the entire depth range without ambiguity,

α =
1
2
ΦPSFeng �Φshift: �4�

2.3. Decoding orientation information

Geometric-phase-based PSFs inherently provide the circular
polarization components of the incident light; by measuring
the light intensity from corresponding PSF lobes, one can
directly determine the ratio between the intensity of the LCP
and the intensity of the RCP. For deduction of linear polariza-
tion components, a quarter-wave plate can be implemented
between lens 2 and the geometric phase mask to aid the
calculations.
Assume a linearly polarized incident light of angle θ with

respect to the fast axis of the quarter-wave plate. The

polarization states after the quarter-wave plate can be written
using the Jones matrix, as in Eq. (5). Decomposing the light field
to LCP and RCP gives the corresponding light intensity after the
geometric phase mask (and the intensity in corresponding PSF
lobes),

M1
4λ
R�θ�Lx =

�
1 0

0 −i

��
cos θ − sin θ

sin θ cos θ

��
1

0

�

=
�

cos θ

−i sin θ

�
=

cL���
2

p
�
1

i

�
� cR���

2
p

�
1

−i

�
: (5)

Solving the above equation, we have

cL =
1���
2

p �cos θ − sin θ�,

cR =
1���
2

p �cos θ� sin θ�, (6)

where c2L and c2R correspond to the normalized intensity of LCP
and RCP, respectively, from which the orientation θ of incident
light can be deduced.
Figure 6 shows the experimental results demonstrating the

relative intensity variations in the PSF lobes as incident light
changes its polarization direction. The upper-left lobe and
lower-right lobe form the LCP helical image, while the other
two lobes form the RCP image. The red and blue dots in
Fig. 7 show their measured intensities. The intensities are the
photon sum of related pixels, normalized to the total intensity
to minimize the influence of fluorescence bleaching. When

Fig. 5. Asymmetric designs of the geometric helical PSF. (a) LCP and RCP with opposite shifts in the y direction; (b) LCP and RCP with opposite shifts in the x
direction.

Fig. 6. (a) Experimental results showing the variations in the PSF profile as the incident light changes its polarization orientation; (b) corresponding incident light
orientation (note that the fast axis of the quarter-wave plate is along the vertical direction).

Vol. 22, No. 3 | March 2024 Chinese Optics Letters

031103-4



the signal light is polarized in (or orthogonal to) the direction of
the quarter-wave plate fast axis, the LCP and RCP lobes exhibit
the same intensity. As the incident light changes its orientation,
the relative intensity of the LCP and RCP lobes varies, following
Eq. (6). Solid magenta and cyan lines show the theoretical
curves. It is evident that the experiment agrees well with theo-
retical predictions, proving that geometric-phase-based PSF can
deduce both the 3D position and the incident light polarization
orientation without splitting into multiple imaging channels.
Therefore, it shows great potential for orientation and localiza-
tion microscopy of single molecules.

2.4. Uncertainties in the estimation

Uncertainties arise because of noise when estimating the 3D
coordinates x, y, and z of the point emitters and incident light
polarization θ. For the spatial coordinates, their theoretically
best precision can be described using the Cramer–Rao lower-
bound metric proposed by Chao et al.[24].
X = fx, y, zg are parameters to be estimated from the recorded

images. Assume a short noise-limited system; the Fisher infor-
mation matrix Iij can be expressed as

Ii,j =
XK
k=1

1
μX,k � β

�
∂ ln μX,k

∂Xi

�
T
�
∂ ln μX,k

∂Xj

�
, (7)

where μX,k is the expected count of the signal photons of the k-th
pixel. It is a combination of LCP and RCP components, each
given by the forward PSF model in Section 2.1, with intensity
coefficients being c2L and c2R. β is the expected count of back-
ground photons per pixel. K refers to the total number of pixels
where the PSF distributes its energy.

The theoretically best precision can be given by the square
root of the Cramer–Rao lower bound, which is the inverse of
the diagonal elements of the Fisher information matrix; thus,
we have σ�Xi� ≥

�������
I−1ii

p
. Figure 8(a) shows the calculated preci-

sion with 8000 signal photons and 10 background photons per
pixel, a condition that is achievable in single-molecule experi-
ments. It is observed that the theoretical precision in x, y, and
z can maintain better than 20 nm over a depth range of 4 μm.
For the uncertainties in θ, we calculate from Eq. (6). With N

signal photons in total, we have NL = N�cos θ − sin θ�2=2�
Kβ=2 photons in the LCP image and NR = N�cos θ�
sin θ�2=2� Kβ=2 photons in the RCP image. Taking the differ-
ence between the two, we have θ = arcsin��NR − NL�=N �=2.
Using the error propagation theory and under Poisson noise
condition [i.e., σ�NL� =

�������
NL

p
, σ�NR� =

�������
NR

p
], we can write

σ�θ� =
�����������������������������������������������
σ�NL�θ��2 � σ�NR�θ��2
N2 − �NL�θ� − NR�θ��2

s

=

�����������������������������������������������
NL�θ� � NR�θ�

N2 − �NL�θ� − NR�θ��2

s
: (8)

Figure 8(b) shows a plot of σ�θ� with N = 8000, Kβ = 1000.
We can see that theoretical uncertainty is below 4° for θ ∈ [50º,
130º]. The uncertainty increases dramatically at θ = 45º
and 135° because at those angles, the LCP or RCP component
in the PSF vanishes completely.

3. Conclusion

In this work, we report a geometric-phase-based helical PSF to
simultaneously estimate the 3D position and dipole orientation
of point emitters. Unlike conventional methods, no polarization
splitting is needed; thus, the optical configuration is compact
and robust. In addition, it is an achromatic PSF, in contrast
to the narrow bandwidth PSFs engineered using a dynamic
phase; and it yields higher photon efficiency than using
liquid-crystal spatial light modulators. Note that the method
is not limited to helical PSF; other PSF designs for 3D localiza-
tionmicroscopy also possess the potential to be enhanced for the
same purpose.

Fig. 7. Measured relative intensity in the PSF lobes (scatter plots) compared
to theoretical results (solid lines); LCP data being the photon summation of
the upper-right and lower-left lobes, normalized to total number of photons;
and RCP data being the photon summation of the other two lobes, normalized
to total number of photons.

Fig. 8. Estimated uncertainties for (a) spatial coordinates x, y, and z and
(b) incident light polarization parameter θ.
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